Introduction
A Python library for multi-dimensional data outlier and anomaly detection using advanced machine learning algorithms.
Publications
- "Outlier Detection Using Vector Cosine Similarity by Adding a Dimension" – Published in ICAIIC 2024 (DOI: 10.1109/ICAIIC60209.2024.10463442)
- I am looking for expert's endorsement to submit an article to the cs.AI section of arXiv. If you would like to endorse me, please visit the URL: (https://arxiv.org/auth/endorse?x=9QAAWI)
Installation
-
Via pip:
pip install mdod
Or via GitHub:
git clone https://github.com/mddod/mdod.git cd mdod python setup.py install
Usage Example
-
import numpy as np import mdod localFile = 'TestDataset.txt' dets = np.loadtxt(localFile, delimiter=',') nd = 1 # Value of the observation point in the new dimension sn = 15 # Number of statistics on top scores result = mdod.md(dets, nd, sn) print(result)
Input Data Format (TestDataset.txt)
-
data1,data2,data3,data4,data5,data6 data1,data2,data3,data4,data5,data6 data1,data2,data3,data4,data5,data6 ...
Output Result Format
-
[value1, '[data1 data2 data3 data4 data5 data6]', '0'] [value2, '[data1 data2 data3 data4 data5 data6]', '1'] [value3, '[data1 data2 data3 data4 data5 data6]', '2'] ...
Additional Examples
- Random 2D Data: Download testmdod2D.py
- Random 3D Data: Download testmdod3D.py